Utilizing Machine Learning to Evaluate the Impact of Policy Shift for Scheduling Mechanism of IPPs to Mitigate Power and Economic Deficit / (Record no. 601847)

000 -LEADER
fixed length control field 00542nam a2200145Ia 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230907s9999||||xx |||||||||||||| ||und||
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.3
Author Mark BIL
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Bilal Asghar Farooqi (00000202977)
9 (RLIN) 116467
245 #0 - TITLE STATEMENT
Title Utilizing Machine Learning to Evaluate the Impact of Policy Shift for Scheduling Mechanism of IPPs to Mitigate Power and Economic Deficit /
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. USPCAS-E, NUST,
Name of publisher, distributor, etc. Islamabad :
Date of publication, distribution, etc. 2019
520 ## - SUMMARY, ETC.
Summary, etc. TH-168
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element MS-EEP Thesis MS Thesis
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Dr Syed Ali Abbas Kazmi
9 (RLIN) 117439
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Thesis
Source of classification or shelving scheme
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Full call number Barcode Date last seen Price effective from Koha item type
          US-Pakistan Center for Advanced Studies in Energy (USPCAS-E) US-Pakistan Center for Advanced Studies in Energy (USPCAS-E) 10/17/2019 621.3 BIL CAS-ETH0000168 09/12/2023 09/12/2023 Thesis
© 2023 Central Library, National University of Sciences and Technology. All Rights Reserved.