Microsoft data mining : integrated business intelligence for e-Commerce and knowledge management Barry de Ville.

By: De Ville, BarryPublisher: Boston : Digital Press, c2001Description: xx, 315 : ill. ; 24 cmISBN: 1555582427Subject(s): Data miningDDC classification: 006.3 Online resources: Publisher description | Table of Contents
Contents:
Machine generated contents note: -- I Introduction to Data Mining -- I.I Something old, something new -- 1.2 Microsoft's approach to developing the right set of tools -- 1.3 Benefits of data mining -- 1.4 Microsoft's entry into data mining -- 1.5 Concept of operations -- 2 The Data Mining Process -- 2.1 Best practices in knowledge discovery in databases -- 2.2 The scientific method and the paradigms that come with it -- 2.3 How to develop your paradigm -- 2.4 The data mining process methodology -- 2.5 Business understanding -- 2.6 Data understanding -- 2.7 Data preparation -- 2.8 Modeling -- 2.9 Evaluation -- 2.10 Deployment -- 2.11 Performance measurement -- 2.12 Collaborative data mining: the confluence of data mining -- and knowledge management -- 3 Data Mining Tools and Techniques -- 3.1 Microsoft's entry into data mining -- 3.2 The Microsoft data mining perspective -- 3.3 Data mining and exploration (DMX) projects -- 3.4 OLE DB for data mining architecture -- 3.5 The Microsoft data warehousing framework and allian( -- 3.6 Data mining tasks supported by SQL Server 2000 -- Analysis Services -- 3.7 Other elements of the Microsoft data mining strategy -- 4 Managing the Data Mining Project -- 4.1 The mining mart -- 4.2 Unit of analysis -- 4.3 Defining the level of aggregation -- 4.4 Defining metadata -- 4.5 Calculations -- 4.6 Standardized values -- 4.7 Transformations for discrete values -- 4.8 Aggregates -- 4.9 Enrichments -- 4.10 Example process (target marketing) -- 4.11 The data mart -- 5 Modeling Data -- S. I The database -- 5.2 Problem scenario -- 5.3 Setting up analysis services -- 5.4 Defining the OLAP cube -- 5.5 Adding to the dimensional representation -- 5.6 Building the analysis view for data mining -- 5.7 Setting up the data mining analysis -- 5.8 Predictive modeling (classification) tasks -- 5.9 Creating the mining model -- 5.10 The tree navigator -- 5.1 I Clustering (creating segments) with clusteranalysis -- 5.12 Confirming the model through validation -- 5.13 Summary -- 6 Deploying the Results -- 6.1 Deployments for predictive tasks (classification) -- 6.2 Lift charts -- 6.3 Backing up and restoring databases -- 7 The Discovery and Delivery of Knowledge for Effective -- Enterprise Outcomes: Knowledge Management -- 7.1 The role of implicit and explicit knowledge -- 7.2 A primer on knowledge management -- 7.3 The Microsoft technology-enabling framework -- 7.4 Summary -- Appendix A: Glossary -- Appendix B: References -- Appendix C: Web Sites -- Appendix D: Data Mining and Knowledge Discovery -- Data Sets in the Public Domain -- Appendix E: Microsoft Solution Providers -- Appendix F: Summary of Knowledge Management -- Case Studies and Web Locations -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Home library Collection Shelving location Call number Status Date due Barcode Item holds
Book Book Central Library (CL)
Central Library (CL)
NFIC First Floor - Artificial Intelligence/Data Mining 006.3 VIL (Browse shelf) Available SEECS003869
Book Book Central Library (CL)
Central Library (CL)
NFIC First Floor - Artificial Intelligence/Data Mining 006.3 VIL (Browse shelf) Available SEECS002988
Book Book Central Library (CL)
Central Library (CL)
NFIC First Floor - Artificial Intelligence/Data Mining 006.3 VIL (Browse shelf) Available SEECS002990
Book Book Central Library (CL)
Central Library (CL)
NFIC First Floor - Artificial Intelligence/Data Mining 006.3 VIL (Browse shelf) Available SEECS002989
Book Book Central Library (CL)
Central Library (CL)
NFIC First Floor - Artificial Intelligence/Data Mining 006.3 VIL (Browse shelf) Available SEECS002216
Total holds: 0

Includes index.

Machine generated contents note: -- I Introduction to Data Mining -- I.I Something old, something new -- 1.2 Microsoft's approach to developing the right set of tools -- 1.3 Benefits of data mining -- 1.4 Microsoft's entry into data mining -- 1.5 Concept of operations -- 2 The Data Mining Process -- 2.1 Best practices in knowledge discovery in databases -- 2.2 The scientific method and the paradigms that come with it -- 2.3 How to develop your paradigm -- 2.4 The data mining process methodology -- 2.5 Business understanding -- 2.6 Data understanding -- 2.7 Data preparation -- 2.8 Modeling -- 2.9 Evaluation -- 2.10 Deployment -- 2.11 Performance measurement -- 2.12 Collaborative data mining: the confluence of data mining -- and knowledge management -- 3 Data Mining Tools and Techniques -- 3.1 Microsoft's entry into data mining -- 3.2 The Microsoft data mining perspective -- 3.3 Data mining and exploration (DMX) projects -- 3.4 OLE DB for data mining architecture -- 3.5 The Microsoft data warehousing framework and allian( -- 3.6 Data mining tasks supported by SQL Server 2000 -- Analysis Services -- 3.7 Other elements of the Microsoft data mining strategy -- 4 Managing the Data Mining Project -- 4.1 The mining mart -- 4.2 Unit of analysis -- 4.3 Defining the level of aggregation -- 4.4 Defining metadata -- 4.5 Calculations -- 4.6 Standardized values -- 4.7 Transformations for discrete values -- 4.8 Aggregates -- 4.9 Enrichments -- 4.10 Example process (target marketing) -- 4.11 The data mart -- 5 Modeling Data -- S. I The database -- 5.2 Problem scenario -- 5.3 Setting up analysis services -- 5.4 Defining the OLAP cube -- 5.5 Adding to the dimensional representation -- 5.6 Building the analysis view for data mining -- 5.7 Setting up the data mining analysis -- 5.8 Predictive modeling (classification) tasks -- 5.9 Creating the mining model -- 5.10 The tree navigator -- 5.1 I Clustering (creating segments) with clusteranalysis -- 5.12 Confirming the model through validation -- 5.13 Summary -- 6 Deploying the Results -- 6.1 Deployments for predictive tasks (classification) -- 6.2 Lift charts -- 6.3 Backing up and restoring databases -- 7 The Discovery and Delivery of Knowledge for Effective -- Enterprise Outcomes: Knowledge Management -- 7.1 The role of implicit and explicit knowledge -- 7.2 A primer on knowledge management -- 7.3 The Microsoft technology-enabling framework -- 7.4 Summary -- Appendix A: Glossary -- Appendix B: References -- Appendix C: Web Sites -- Appendix D: Data Mining and Knowledge Discovery -- Data Sets in the Public Domain -- Appendix E: Microsoft Solution Providers -- Appendix F: Summary of Knowledge Management -- Case Studies and Web Locations -- Index.

There are no comments on this title.

to post a comment.
© 2023 Central Library, National University of Sciences and Technology. All Rights Reserved.