TY - GEN AU - Koller,Daphne AU - Friedman,Nir TI - Probabilistic Graphical Models: Principles and Techniques T2 - Adaptive computation and machine learning SN - 0-262-01319-3 (hardcover : alk. paper) U1 - 519.54202,KOL PY - 2009/// CY - Cambridge, MA PB - MIT Press KW - Bayesian statistical decision theory KW - Graphic methods KW - Beslutsteori KW - matematisk statistik KW - Graphical modeling (Statistics) KW - Probability KW - Sannolikhetskalkyl KW - Statistisk inferens N1 - Introduction (Page-1), Foundations (Page-15), Bayesian Network Representation (Page-45), Undirected Graphical Models (Page-103), Local Probabilistic Models (Page-157), Template-Based Representations (Page-199), Gaussian Network Models (Page-247), Exponential Family (Page-261), Exact Inference: Variable Elimination (Page-287), Exact Inference: Clique Trees (Page-345), Inference as Optimization (Page-381), Particle-Based Approximate Inference (Page-487), MAP Inference (Page-551), Inference in Hybrid Networks (Page-605), Inference in Temporal Models (Page-651), Learning Graphical Models: Overview (Page-697), Parameter Estimation (Page-717), Structure Learning in Bayesian Networks (Page-783), Partially Observed Data (Page-849), Learning Undirected Models (Page-943), Causality (Page-1009), Utilities and Decisions (Page-1059), Structured Decision Problems (Page-1085) ER -