TY - GEN AU - Witten,Ian H. TI - Data mining: practical machine learning tools and techniques SN - 008047702X U1 - 006.3,WIT PY - 2005/// CY - Amsterdam PB - Morgan Kaufmann, Elsevier KW - Artificial intelligence N1 - What’s It All About? (Page-3), Input: Concepts, Instances, Attributes (Page-41), Output: Knowledge Representation (Page-61), Algorithms: The Basic Methods (Page-83), Credibility: Evaluating What’s Been Learned(Page-143), Implementations: Real Machine Learning Schemes (Page-187), Transformations: Engineering The Input And Output(Page-285), Moving On: Extensions And Applications.Part II: The Weka Machine Learning Workbench(Page- 363), Introduction To Weka (Page-365) The Explorer(Page-369), The Knowledge Flow Interface (Page-427), The Experimenter (Page-437), The Command-Line Interface (Page-449), Embedded Machine Learning (Page-461), Writing New Learning Schemes (Page-471) UR - http://link.libris.kb.se/sfxmah?url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&rfr_id=info:sid/sfxit.com:opac_856&url_ctx_fmt=info:ofi/fmt:kev:mtx:ctx&sfx.ignore_date_threshold=1&rft.object_id=1000000000364728&svc_val_fmt=info:ofi/fmt:kev:mtx:sch_svc& ER -