TY - BOOK AU - Korpela,S.A. TI - Principles of turbomachinery SN - 9780470536728 AV - TJ267 .K57 2011 U1 - 621.406 23 PY - 2011/// CY - Hoboken, N.J. PB - Wiley KW - Turbomachines N1 - Machine generated contents note: List of Figures.List of Tables.Foreword.Acknowledgments.1. Introduction.1. Energy and fluid machines.1.2 Historical survey.2. Principles of Thermodynamics and Fluid Flow.2.1 Mass conservation principle.2.2 First Law of thermodynamics.2.3 Second law of thermodynamics.2.4 Equations of state.2.5 Efficiency.2.6 Momentum balance.3. Compressible Flow through Nozzles.3.1 Mach number and the speed of sound.3.2 Isentropic flow with area change.3.3 Normal shocks.3.4 Influence of friction in flow through straight nozzles.3.5 Supersaturation.3.6 Prandtl-Meyer expansion.3.7 Flow leaving a turbine nozzle.4. Principles of Turbomachine Analysis.4.1 Velocity triangles.4.2 Moment of momentum balance.4.3 Energy transfer in turbomachines.4.4 Utilization.4.5 Scaling and similitude.4.6 Performance characteristics.5. Steam Turbines.5.1 Introduction.5.2 Impulse turbines.5.3 Stage with zero reaction.5.4 Loss coefficients.6. Axial Turbines.6.1 Introduction.6.2 Turbine state analysis.6.3 Flow and loading coefficients and reaction ratio.6.4 Three-dimensional flow.6.5 Radial equilibrium.6.6 Constant mass flux.6.7 Turbine efficiency and losses.6.8 Multistage turbine.7. Axial compressors.7.1 Compressor stage analysis.7.2 Design deflection.7.3 Radial equilibrium.7.4 Diffusion and losses.7.5 Cascade aerodynamics.8. Centrifugal Compressors and Pumps.8.1 Compressor analysis.8.2 Inlet design.8.3 Exit design.8.4 Vaneless diffuser.8.5 Centrifugal pumps.8.6 Fans.8.7 Cavitation.8.8 Diffuser and Volute design.9. Radial Inflow Turbines.9.1 Turbine analysis.9.2 Efficiency.9.3 Specific speed and specific diameter.9.4 Stator flow.9.5 Design of the inlet of a radial inflow turbine.9.6 Design of the Exit.10. Hydraulic Turbines.10.1 Hydroelectric Power Plant.10.2 Hydraulic turbines and their specific speed.10.3 Pelton wheel.10.4 Francis turbine.10.5 Kaplan turbine.10.6 Cavitation.11. Hydraulic Transmission of Power.11.1 Fluid couplings.11.2 Torque converters.12. Wind turbines.12.1 Horizontal axis wind turbine.12.2 Momentum and blade element theory of wind turbines.12.3 Blade Forces.12.4 Turbomachinery and future prospects for energy.Appendix A. Streamline curvature and radial equilibrium.Appendix B. Thermodynamic Tables.References.Index; Includes bibliographical references and index; Machine generated contents note: 1.Introduction -- 1.1.Energy and fluid machines -- 1.1.1.Energy conversion of fossil fuels -- 1.1.2.Steam turbines -- 1.1.3.Gas turbines -- 1.1.4.Hydraulic turbines -- 1.1.5.Wind turbines -- 1.1.6.Compressors -- 1.1.7.Pumps and blowers -- 1.1.8.Other uses and issues -- 1.2.Historical survey -- 1.2.1.Water power -- 1.2.2.Wind turbines -- 1.2.3.Steam turbines -- 1.2.4.Jet propulsion -- 1.2.5.Industrial turbines -- 1.2.6.Note on units -- 2.Principles of Thermodynamics and Fluid Flow -- 2.1.Mass conservation principle -- 2.2.First law of thermodynamics -- 2.3.Second law of thermodynamics -- 2.3.1.T ds equations -- 2.4.Equations of state -- 2.4.1.Properties of steam -- 2.4.2.Ideal gases -- 2.4.3.Air tables and isentropic relations -- 2.4.4.Ideal gas mixtures -- 2.4.5.Incompressibility -- 2.4.6.Stagnation state -- 2.5.Efficiency -- 2.5.1.Efficiency measures -- 2.5.2.Thermodynamic losses -- 2.5.3.Incompressible fluid -- 2.5.4.Compressible flows -- 2.6.Momentum balance -- Exercises -- 3.Compressible Flow through Nozzles -- 3.1.Mach number and the speed of sound -- 3.1.1.Mach number relations -- 3.2.Isentropic flow with area change -- 3.2.1.Converging nozzle -- 3.2.2.Converging-diverging nozzle -- 3.3.Normal shocks -- 3.3.1.Rankine-Hugoniot relations -- 3.4.Influence of friction in flow through straight nozzles -- 3.4.1.Polytropic efficiency -- 3.4.2.Loss coefficients -- 3.4.3.Nozzle efficiency -- 3.4.4.Combined Fanno flow and area change -- 3.5.Supersaturation -- 3.6.Prandtl-Meyer expansion -- 3.6.1.Mach waves -- 3.6.2.Prandtl-Meyer theory -- 3.7.Flow leaving a turbine nozzle -- Exercises -- 4.Principles of Turbomachine Analysis -- 4.1.Velocity triangles -- 4.2.Moment of momentum balance -- 4.3.Energy transfer in turbomachines -- 4.3.1.Trothalpy and specific work in terms of velocities -- 4.3.2.Degree of reaction -- 4.4.Utilization -- 4.5.Scaling and similitude -- 4.5.1.Similitude -- 4.5.2.Incompressible flow -- 4.5.3.Shape parameter or specific speed -- 4.5.4.Compressible flow analysis -- 4.6.Performance characteristics -- 4.6.1.Compressor performance map -- 4.6.2.Turbine performance map -- Exercises -- 5.Steam Turbines -- 5.1.Introduction -- 5.2.Impulse turbines -- 5.2.1.Single-stage impulse turbine -- 5.2.2.Pressure compounding -- 5.2.3.Blade shapes -- 5.2.4.Velocity compounding -- 5.3.Stage with zero reaction -- 5.4.Loss coefficients -- Exercises -- 6.Axial Turbines -- 6.1.Introduction -- 6.2.Turbine stage analysis -- 6.3.Flow and loading coefficients and reaction ratio -- 6.3.1.Fifty percent (50%) stage -- 6.3.2.Zero percent (0%) reaction stage -- 6.3.3.Off-design operation -- 6.4.Three-dimensional flow -- 6.5.Radial equilibrium -- 6.5.1.Free vortex flow -- 6.5.2.Fixed blade angle -- 6.6.Constant mass flux -- 6.7.Turbine efficiency and losses -- 6.7.1.Soderberg loss coefficients -- 6.7.2.Stage efficiency -- 6.7.3.Stagnation pressure losses -- 6.7.4.Performance charts -- 6.7.5.Zweifel correlation -- 6.7.6.Further discussion of losses -- 6.7.7.Ainley-Mathieson correlation -- 6.7.8.Secondary loss -- 6.8.Multistage turbine -- 6.8.1.Reheat factor in a multistage turbine -- 6.8.2.Polytropic or small-stage efficiency -- Exercises -- 7.Axial Compressors -- 7.1.Compressor stage analysis -- 7.1.1.Stage temperature and pressure rise -- 7.1.2.Analysis of a repeating stage -- 7.2.Design deflection -- 7.2.1.Compressor performance map -- 7.3.Radial equilibrium -- 7.3.1.Modified free vortex velocity distribution -- 7.3.2.Velocity distribution with zero-power exponent -- 7.3.3.Velocity distribution with first-power exponent -- 7.4.Diffusion factor -- 7.4.1.Momentum thickness of a boundary layer -- 7.5.Efficiency and losses -- 7.5.1.Efficiency -- 7.5.2.Parametric calculations -- 7.6.Cascade aerodynamics -- 7.6.1.Blade shapes and terms -- 7.6.2.Blade forces -- 7.6.3.Other losses -- 7.6.4.Diffuser performance -- 7.6.5.Flow deviation and incidence -- 7.6.6.Multistage compressor -- 7.6.7.Compressibility effects -- Exercises -- 8.Centrifugal Compressors and Pumps -- 8.1.Compressor analysis -- 8.1.1.Slip factor -- 8.1.2.Pressure ratio -- 8.2.Inlet design -- 8.2.1.Choking of the inducer -- 8.3.Exit design -- 8.3.1.Performance characteristics -- 8.3.2.Diffusion ratio -- 8.3.3.Blade height -- 8.4.Vaneless diffuser -- 8.5.Centrifugal pumps -- 8.5.1.Specific speed and specific diameter -- 8.6.Fans -- 8.7.Cavitation -- 8.8.Diffuser and volute design -- 8.8.1.Vaneless diffuser -- 8.8.2.Volute design -- Exercises -- 9.Radial Inflow Turbines -- 9.1.Turbine analysis -- 9.2.Efficiency -- 9.3.Specific speed and specific diameter -- 9.4.Stator flow -- 9.4.1.Loss coefficients for stator flow -- 9.5.Design of the inlet of a radial inflow turbine -- 9.5.1.Minimum inlet Mach number -- 9.5.2.Blade stagnation Mach number -- 9.5.3.Inlet relative Mach number -- 9.6.Design of the Exit -- 9.6.1.Minimum exit Mach number -- 9.6.2.Radius ratio r3s/r2 -- 9.6.3.Blade height-to-radius ratio b2/r2 -- 9.6.4.Optimum incidence angle and the number of blades -- Exercises -- 10.Hydraulic Turbines -- 10.1.Hydroelectric Power Plants -- 10.2.Hydraulic turbines and their specific speed -- 10.3.Pelton wheel -- 10.4.Francis turbine -- 10.5.Kaplan turbine -- 10.6.Cavitation -- Exercises -- 11.Hydraulic Transmission of Power -- 11.1.Fluid couplings -- 11.1.1.Fundamental relations -- 11.1.2.Flow rate and hydrodynamic losses -- 11.1.3.Partially filled coupling -- 11.2.Torque converters -- 11.2.1.Fundamental relations -- 11.2.2.Performance -- Exercises -- 12.Wind turbines -- 12.1.Horizontal-axis wind turbine -- 12.2.Momentum and blade element theory of wind turbines -- 12.2.1.Momentum Theory -- 12.2.2.Ducted wind turbine -- 12.2.3.Blade element theory and wake rotation -- 12.2.4.Irrotational wake -- 12.3.Blade Forces -- 12.3.1.Nonrotating wake -- 12.3.2.Wake with rotation -- 12.3.3.Ideal wind turbine -- 12.3.4.Prandtl's tip correction -- 12.4.Turbomachinery and future prospects for energy -- Exercises -- Appendix A Streamline curvature and radial equilibrium -- A.1.Streamline curvature method -- A.1.1.Fundamental equations -- A.1.2.Formal solution -- Appendix B Thermodynamic Tables N2 - "This text provides students and professionals at all levels with a highly accessible reference. The coverage allows for a smooth transition from the study of thermodynamics, fluid dynamics, and heat transfer to the subject of turbomachinery, with chapters organized so that more difficult material is left to the later sections. Chapters relate turbomachinery to new areas such as wind power and three-dimensional effects in axial turbomachines, providing information on several types of turbomachinery rather than concentrating specifically on one type"-- UR - http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=024629653&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA ER -