Mathematics for machine learning /
Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong.
- pages cm
Introduction and motivation (Page-1), Linear algebra (Page-8),Analytic geometry (Page-57), Matrix decompositions (Page-82),Vector calculus (Page-120), Probability and distribution (Page-152),Continuous optimization (Page-201),When models meet data (Page-225),Linear regression (Page-260), Dimensionality reduction with principal component analysis (Page-286), Density estimation with Gaussian mixture models (Page-314),Classification with support vector machines. (Page-335).