000 02445 a2200217 4500
003 Nust
005 20221117123414.0
010 _a 85017260
020 _a0387158006 (U.S. : pbk.)
040 _cNust
082 0 0 _a512.7,SCH
100 1 _aSchroeder, M. R.
_9102840
245 1 0 _aNumber theory in science and communication :
_bwith applications in cryptography, physics, digital information, computing, and self-similarity /
_cM.R. Schroeder.
250 _a2nd enl. ed.
260 _aBerlin ;
_aNew York :
_bSpringer-Verlag,
_cc1986.
300 _axix, 374 p. :
_bill. ;
_c24 cm.
440 0 _aSpringer series in information sciences ;
_v7
_9101218
505 _aPart i: A Few Fundamental, Introduction (Page-1), The Natural Numbers (Page-17), Primes (Page-26), The Prime Distribution (Page-40), Part ii: Some Simple Applications, Fraction: Continued, Egyptian and Farey (Page-55), Part iii: Congruence’s and the like , Linear Congruence’s (Page-87), Diophantine Equations (Page-95), The Theorems of Fermat , Wilson and Euler (Page-111), Part iv: Cryptography and Divisors , Euler trap Doors and Publics and Public-Key Encryption (Page-118), The Divisor Functions (Page-127), The Prime Divisor Functions (Page-135), Certified Signatures (Page-149), Primitive Roots (Page-151), Knapsack Encryption (Page-168), Part V: Residues and Diffraction , Quadratic Residues (Page-172), Part VI: Chinese and Other Fast Algorithms, The Chinese Remainder Theorem and Simultaneous Congruence’s (Page-186), Fast Transformation and Kronecker Products (Page-196), Quadratic Congruence’s (Page-201), Part vii: Pseudo primes, Mobius Transform, and Partitions , Pseudo primes, Poker and Remote Coin Tossing (Page-203), The Mobius Function and the Mobius Transform (Page-215), Generating Functions and Partitions (Page-223), Part viii: Cyclostomes and Polynomials , Cyclotomic Polynomials (Page-232), Linear Systems and Polynomials (Page-249), Polynomial Theory (Page-253), Part ix : Galois Fields and More Application , Galois Fields (Page-259), Spectral Properties of Galois Sequences(Page-274), Random Number Generations (Page-289), Waveforms and Radiation Patterns (Page-297) Number Theory, Randomness and Art (Page-307), Part x: Self-Similarity, Fractals and Art , Self-similarity , Fractals, Deterministic Chaos and New Sate Of Matter (Page-315), Appendix (Page-341).
650 0 _aNumber theory.
_93455
942 _cREF
_2ddc
_k512.7,SCH
999 _c188721
_d188721