000 02086cam a2200385 i 4500
001 19134018
003 NUST
005 20241021143130.0
008 160613t20162016maua b 001 0 eng
010 _a 2016022992
020 _a9780262035613 (hardcover : alk. paper)
020 _a0262035618 (hardcover : alk. paper)
040 _aDLC
_beng
_cDLC
_erda
_dDLC
042 _apcc
050 0 0 _aQ325.5
_b.G66 2016
082 0 0 _a006.31 GOO
_223
100 1 _aGoodfellow, Ian,
_eauthor.
_952061
245 1 0 _aDeep learning /
_cIan Goodfellow, Yoshua Bengio, and Aaron Courville.
264 1 _aCambridge, Massachusetts :
_bThe MIT Press,
_c[2016]
264 4 _c©2016
300 _axxii, 775 pages :
_billustrations (some color) ;
_c24 cm.
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
490 0 _aAdaptive computation and machine learning
504 _aIncludes bibliographical references (pages 711-766) and index.
505 0 _aApplied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Deep learning research. Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models.
650 0 _aMachine learning,
_9966
700 1 _aBengio, Yoshua,
_eauthor.
_952062
700 1 _aCourville, Aaron,
_eauthor.
_952063
856 _uhttp://10.250.8.41:8080/xmlui/handle/123456789/47283
906 _a7
_bcbc
_corignew
_d1
_eecip
_f20
_gy-gencatlg
942 _2ddc
_cBK
999 _c329664
_d329664