000 04225cam a2200565 i 4500
001 20987519
005 20230518101752.0
008 190528s2020 flua b 001 0 eng c
010 _a 2019941841
016 7 _a101763352
_2DNLM
020 _a9780367342906
_q(hardback ;
_qalk. paper)
020 _a0367342901
_q(hardback ;
_qalk. paper)
035 _a(OCoLC)on1102647135
040 _aNLM
_beng
_cNLM
_erda
_dYDXIT
_dOCLCF
_dNUI
_dYDX
_dOCLCO
_dOCLCQ
_dOCLCA
_dUPM
_dOCLCO
_dDLC
042 _apcc
043 _an-us---
050 0 0 _aRA410.6
_b.Y36 2020
060 0 0 _aW 86
082 _a362.1068
_bYAN
100 1 _aYang, Chengliang
_c(Of University of Florida),
_eauthor.
_9112416
245 1 0 _aData-driven approaches for health care :
_bmachine learning for identifying high utilizers /
_cChengliang Yang, Chris Delcher, Elizabeth Shenkman, Sanjay Ranka.
264 1 _aBoca Raton :
_bCRC Press,
_c[2020]
300 _aix, 107 pages :
_billustrations ;
_c26 cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
490 1 _aChapman & Hall/CRC big data series
500 _a"A Chapman & Hall book."
500 _aIntroduction. Overview of Healthcare Data. Machine Learning Modeling from Healthcare Data. Machine Learning Modeling from Healthcare Data. Descriptive Analysis of High Utilizers. Residuals Analysis for Identifying High Utilizers. Machine Learning Results for High Utilizers.
504 _aIncludes bibliographical references and index.
505 0 _aIntroduction. Overview of Healthcare Data. Machine Learning Modeling from Healthcare Data. Machine Learning Modeling from Healthcare Data. Descriptive Analysis of High Utlizers. Residuals Analysis for Identifying High Utilizers. Machine Learning Results for High Utilizers.
520 _aHealth care utilization routinely generates vast amounts of data from sources ranging from electronic medical records, insurance claims, vital signs, and patient-reported outcomes. Predicting health outcomes using data modeling approaches is an emerging field that can reveal important insights into disproportionate spending patterns. This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges uniquely posed by this problem. Key Features: Introduces basic elements of health care data, especially for administrative claims data, including disease code, procedure codes, and drug codes Provides tailored supervised and unsupervised machine learning approaches for understanding and predicting the high utilizers Presents descriptive data driven methods for the high utilizer population Identifies a best-fitting linear and tree-based regression model to account for patients' acute and chronic condition loads and demographic characteristics.--
_cSource other than the Library of Congress.
650 0 _aMedical care
_xUtilization
_xMathematical models.
_9112417
650 0 _aMachine learning.
650 1 2 _aMedical Overuse
_xprevention & control
_9112418
650 2 2 _aMedical Overuse
_xstatistics & numerical data
_9112419
650 2 2 _aModels, Theoretical
_92968
650 2 2 _aMachine Learning
650 7 _aMachine learning.
_2fast
_0(OCoLC)fst01004795
_9112420
650 7 _aMedical care
_xUtilization
_xMathematical models.
_2fast
_0(OCoLC)fst01013885
_9112417
651 2 _aUnited States
700 1 _aDelcher, Chris,
_eauthor.
_9112421
700 1 _aShenkman, Elizabeth,
_eauthor.
_9112422
700 1 _aRanka, Sanjay,
_eauthor.
_9101224
776 0 8 _iElectronic version:
_aYang, Chengliang.
_tData driven approaches for healthcare.
_dBoca Raton : CRC Press, Taylor & Francis Group, 2020
_z9780429342769
_w(OCoLC)1121596821
830 0 _aChapman & Hall/CRC big data series.
_9112423
906 _a7
_bcbc
_cpccadap
_d2
_encip
_f20
_gy-gencatlg
942 _2ddc
_cBK
999 _c594800
_d594800