Performance evaluation and design of flight vehicle control systems / (Record no. 594064)

000 -LEADER
fixed length control field 08891cam a22003617i 4500
001 - CONTROL NUMBER
control field 19202149
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230322123801.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 160802t20162016njua b 001 0 eng d
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2016449168
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119009764
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1119009766
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)ocn936412775
040 ## - CATALOGING SOURCE
Original cataloging agency SISPL
Language of cataloging eng
Transcribing agency SISPL
Description conventions rda
Modifying agency YDXCP
-- FER
-- OCLCQ
-- DLC
042 ## - AUTHENTICATION CODE
Authentication code lccopycat
050 00 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TL589.4
Item number .F35 2016
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 629.8
Author Mark FAL
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Falangas, Eric T.,
Relator term author.
9 (RLIN) 111055
245 10 - TITLE STATEMENT
Title Performance evaluation and design of flight vehicle control systems /
Statement of responsibility, etc. Eric T. Falangas.
246 30 - VARYING FORM OF TITLE
Title proper/short title Flight vehicle control systems
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Piscataway, NJ :
Name of producer, publisher, distributor, manufacturer IEEE Press ;
Place of production, publication, distribution, manufacture Hoboken, New Jersey :
Name of producer, publisher, distributor, manufacturer Wiley,
Date of production, publication, distribution, manufacture, or copyright notice [2016]
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©2016
300 ## - PHYSICAL DESCRIPTION
Extent xiii, 417 pages :
Other physical details illustrations ;
Dimensions 25 cm
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term unmediated
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Carrier type code cr
Source rdacarrier
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Includes bibliographical references (pages 409-412) and index.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Part 1. Description of the dynamic models. 1.1. Aerodynamic models ; 1.2. Structural flexibility ; 1.3. Propellant sloshing ; 1.4. Dynamic coupling between vehicle. actuators, and control effectors ; 1.5. Control issues ; 1.6. Coordinate axes ; Nomenclature -- Part 2. Nonlinear rigid-body equations used in 6-DOF simulations. 2.1. Force and acceleration equations ; 2.2. Moment and angular acceleration equations ; 2.3. Gravitational forces ; 2.4. Engine TVC forces ; 2.5. Aerodynamic forces and moments ; 2.6. Propellant sloshing using the pendulum model ; 2.7. Euler angles ; 2.8. Vehicle altitude and cross-range velocity calculation ; 2.9. Rates with respect to the stability axes ; 2.10. Turn coordination ; 2.11. Acceleration sensed by an accelerometer ; 2.12. Vehicle controlled with a system of momentum exchange devices ; 2.13. Spacecraft controlled with reaction wheels array ; 2.14. Spacecraft controlled with an array of single-gimbaled SMGs. 2.14.1. Math model of a SGCMS array ; 2.14.2. Steering logic for a spacecraft with SGCMGs -- Part 3. Linear perturbation equations used in control analysis. 3.1. Force and acceleration equations ; 3.2. Linear accelerations ; 3.3. Moment and angular acceleration equations ; 3.4. Gravitational forces ; 3.5. Forces and moments due to an engine pivoting and throttling ; 3.6. Aerodynamic forces and moments ; 3.7. Modeling a wind-gust disturbance ; 3.8. Propellant sloshing (spring-mass analogy) ; 3.9. Structural flexibility. 3.9.1. The bending equation ; 3.10. Load torques. 3.10.1. Load torques at the nozzle gimbal ; 3.10.2. Hinge moments at the control surfaces ; 3.11. Output sensors. 3.11.1. Vehicle attitude, Euler angles ; 3.11.2. Altitude and cross-range velocity variations ; 3.11.3. Gyros or rate gyros ; 3.11.4. Acceleration sensed by an accelerometer ; 3.11.5. Angle of attack and sideslip sensors ; 3.12. Angle of attack and sideslip estimators ; 3.13. Linearized equations of a spacecraft with CMGs and LVLH orbit ; 3.14. Linearized equations of an orbiting spacecraft with RWA and momentum bias ; 3.15. Linearized equations of spacecraft with SGCMG -- Part 4. Actuators for engine nozzles and aerosurfers control. 4.1. Actuator models. 4.1.1. Simple actuator model ; 4.1.2. Electrohydraulic actuator ; 4.1.3. Electromechanical actuator ; 4.2. Combining a flexible vehicle model with actuators ; 4.3. Electromechanical actuator example -- Part 5. Effector combination logic. 5.1. Dedication of an effector combination matrix. 5.1.1. Forces and moments generated by a single engine ; 5.1.2. Moments and forces generated by a single engine gimbaling in pitch and yaw ; 5.1.3. Moments and forces of an engine gimbaling in a single skewed direction ; 5.1.4. Moments and forces generated by a throttling engine or an RCS jet ; 5.1.5. Moment and force variations generated by a control surface deflection from trim ; 5.1.6. Vehicle accelerations due to the combined effect from all actuators ; 5.2. Mixing-logic example ; 5.3. Space shuttle ascent analysis example. 5.3.1. Pitch axis analysis ; 5.3.2. Lateral axes flight control system ; 5.3.3. Closed-loop simulation analysis -- Part 6. Trimming the vehicle effectors. 6.1. Classical aircraft trimming ; 6.2. Trimming along a trajectory. 6.2.1. Aerodynamic moments and forces ; 6.2.2. Moments and forces from an engine gimbaling in pitch and yaw ; 6.2.3. Numerical solution for calculating the effector trim deflections and throttles ; 6.2.4. Adjusting the trim profile along the trajectory -- Part 7. Static performance analysis along a flight trajectory. 7.1. Transforming the aeromoment coefficients ; 7.2. Control demands partial matric C(T). 7.2.1. Vehicle moments and forces generated from a double-gimbaling engine ; 7.2.2. Vehicle moments and forces generated by an engine gimballing in single direction ; 7.2.3. Moment and force variations generated by a throttling engine ; 7.2.4. Vehicle moments and forces generated by control surfaces ; 7.2.5. Total vehicle moments and forces due to all effectors combined ; 7.3. Performance parameters. 7.3.1. Aerodynamic center ; 7.3.2. Static margin ; 7.3.3. Center of pressure ; 7.3.4. Pitch static stability/time to double amplitude parameter (T2) ; 7.3.5. Derivation of time to double amplitude ; 7.3.6. Directional stability (Cnb-dynamic) ; 7.3.7. Lateral static stability/time to double amplitude ; 7.3.8. Authority of the control effectors ; 7.3.9. Biased effectors ; 7.3.10. Control to disturbance moments ratio (MaIMg) ; 7.3.11. Pitch control authority against an angle of attach amax dispersion ; 7.3.12. Lateral control authority against an angle of sideslip Bmax disturbance ; 7.3.13. Normal and lateral loads ; 7.3.14. Bank angle and side force during a steady sideslip ; 7.3.15. Engine-out of Ycg offset situations ; 7.3.16. Lateral control departure parameter ; 7.3.17. Examples showing the effects of LCDP sign reversal on stability ; 7.3.18. Effector capability to provide rotational accelerations ; 7.3.19. Effector capability to provide translational accelerations ; 7.3.20. Steady pull-up maneuverability ; 7.3.21. Pitch inertial coupling due to stability roll ; 7.3.22. Yaw inertial coupling due to loaded roll ; 7.3.23. Moments at the hinges of the control surfaces ; 7.4. Notes on spin departure / Aditya A. Paranjape. 7.4.1. Stability-based criteria ; 7.4.2. Solution-based criteria ; 7.5. Appendix -- Part 8. Graphical performance analysis. 8.1. Contour plots of performance parameters versus (mach and alpha) ; 8.2. Vector diagram analysis. 8.2.1. Maximum moment and force vector diagrams ; 8.2.2. Maximum acceleration vector diagrams ; 8.2.3. Moment and force partials vector diagrams ; 8.2.4. Vector diagram partials of acceleration per acceleration demand ; 8.3. Converting the aero uncertainties from individual surfaces to vehicle axes. 8.3.1. Uncertainties in the control partials ; 8.3.2. Uncertainties due to peak control demands ; 8.3.3. Acceleration uncertainties -- Part 9. Flight control design. 9.1. LQR state-feedback control ; 9.2. H-infinity state-feedback ; 9.3. H-infinity control using full-order output feedback ; 9.4. Control design examples ; 9.5. Control design for a reentry vehicle. 9.5.1. Early reentry phase ; 9.5.2. Midphase ; 9.5.3. Approach and landing phase ; 9.6. Rocket plane with a throttling engine. 9.6.1. Design model ; 9.6.2. LQR control design ; 9.6.3. Simulation of the longitudinal control system ; 9.6.4. Stability analysis ; 9.7. Shuttle ascent control system redesign using H-infinity. 9.7.1. Pitch axis H-infinity ; 9.7.2. Lateral axes H-infinity design ; 9.7.3. Sensitivity comparison using simulations ; 9.8. Creating uncertainty models ; 9.8.1. The internal feedback loop structure ; 9.8.2. Implementation of the IFL model -- Part 10. Vehicle design examples. 10.1. Lifting-body space-plane reentry design example. 10.1.1. Control modes and trajectory description ; 10.1.2. Early hypersonic phase using alpha control ; 10.1.3. Normal acceleration control mode ; 10.1.4. Flight-path angle control mode ; 10.1.5. Approach and landing phase ; 10.1.6. Six-DOF nonlinear simulation ; 10.2. Launch vehicle with wings. 10.2.1. Trajectory analysis ; 10.2.2. Trimming along the trajectory ; 10.2.3. Trimming with an engine thrust failure ; 10.2.4. Analysis of static perforce along the trajectory ; 10.2.5. Controllability analysis using vector diagrams ; 10.2.6. Creating an ascent dynamic model and an effector mixing logic ; 10.2.7. Ascent control system design, analysis and simulation ; 10.3. Space station design example. 10.3.1. Control design ; 10.3.2. Simulation and analysis.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Flight control
General subdivision Evaluation.
9 (RLIN) 111056
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Engineering design
General subdivision Evaluation.
9 (RLIN) 111057
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN)
a 7
b cbc
c copycat
d 2
e ncip
f 20
g y-gencatlg
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type Book
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Full call number Barcode Date last seen Price effective from Koha item type
          School of Mechanical & Manufacturing Engineering (SMME) School of Mechanical & Manufacturing Engineering (SMME) Aerospace Engineering 03/22/2023 629.8 FAL SMME-4080 03/22/2023 03/22/2023 Book
© 2023 Central Library, National University of Sciences and Technology. All Rights Reserved.