Performance evaluation and design of flight vehicle control systems / Eric T. Falangas.

By: Falangas, Eric T [author.]Material type: TextTextPublisher: Piscataway, NJ : Hoboken, New Jersey : IEEE Press ; Wiley, [2016]Copyright date: ©2016Description: xiii, 417 pages : illustrations ; 25 cmContent type: text Media type: unmediated Carrier type: volumeISBN: 9781119009764; 1119009766Other title: Flight vehicle control systemsSubject(s): Flight control -- Evaluation | Engineering design -- EvaluationDDC classification: 629.8 LOC classification: TL589.4 | .F35 2016
Contents:
Part 1. Description of the dynamic models. 1.1. Aerodynamic models ; 1.2. Structural flexibility ; 1.3. Propellant sloshing ; 1.4. Dynamic coupling between vehicle. actuators, and control effectors ; 1.5. Control issues ; 1.6. Coordinate axes ; Nomenclature -- Part 2. Nonlinear rigid-body equations used in 6-DOF simulations. 2.1. Force and acceleration equations ; 2.2. Moment and angular acceleration equations ; 2.3. Gravitational forces ; 2.4. Engine TVC forces ; 2.5. Aerodynamic forces and moments ; 2.6. Propellant sloshing using the pendulum model ; 2.7. Euler angles ; 2.8. Vehicle altitude and cross-range velocity calculation ; 2.9. Rates with respect to the stability axes ; 2.10. Turn coordination ; 2.11. Acceleration sensed by an accelerometer ; 2.12. Vehicle controlled with a system of momentum exchange devices ; 2.13. Spacecraft controlled with reaction wheels array ; 2.14. Spacecraft controlled with an array of single-gimbaled SMGs. 2.14.1. Math model of a SGCMS array ; 2.14.2. Steering logic for a spacecraft with SGCMGs -- Part 3. Linear perturbation equations used in control analysis. 3.1. Force and acceleration equations ; 3.2. Linear accelerations ; 3.3. Moment and angular acceleration equations ; 3.4. Gravitational forces ; 3.5. Forces and moments due to an engine pivoting and throttling ; 3.6. Aerodynamic forces and moments ; 3.7. Modeling a wind-gust disturbance ; 3.8. Propellant sloshing (spring-mass analogy) ; 3.9. Structural flexibility. 3.9.1. The bending equation ; 3.10. Load torques. 3.10.1. Load torques at the nozzle gimbal ; 3.10.2. Hinge moments at the control surfaces ; 3.11. Output sensors. 3.11.1. Vehicle attitude, Euler angles ; 3.11.2. Altitude and cross-range velocity variations ; 3.11.3. Gyros or rate gyros ; 3.11.4. Acceleration sensed by an accelerometer ; 3.11.5. Angle of attack and sideslip sensors ; 3.12. Angle of attack and sideslip estimators ; 3.13. Linearized equations of a spacecraft with CMGs and LVLH orbit ; 3.14. Linearized equations of an orbiting spacecraft with RWA and momentum bias ; 3.15. Linearized equations of spacecraft with SGCMG -- Part 4. Actuators for engine nozzles and aerosurfers control. 4.1. Actuator models. 4.1.1. Simple actuator model ; 4.1.2. Electrohydraulic actuator ; 4.1.3. Electromechanical actuator ; 4.2. Combining a flexible vehicle model with actuators ; 4.3. Electromechanical actuator example -- Part 5. Effector combination logic. 5.1. Dedication of an effector combination matrix. 5.1.1. Forces and moments generated by a single engine ; 5.1.2. Moments and forces generated by a single engine gimbaling in pitch and yaw ; 5.1.3. Moments and forces of an engine gimbaling in a single skewed direction ; 5.1.4. Moments and forces generated by a throttling engine or an RCS jet ; 5.1.5. Moment and force variations generated by a control surface deflection from trim ; 5.1.6. Vehicle accelerations due to the combined effect from all actuators ; 5.2. Mixing-logic example ; 5.3. Space shuttle ascent analysis example. 5.3.1. Pitch axis analysis ; 5.3.2. Lateral axes flight control system ; 5.3.3. Closed-loop simulation analysis -- Part 6. Trimming the vehicle effectors. 6.1. Classical aircraft trimming ; 6.2. Trimming along a trajectory. 6.2.1. Aerodynamic moments and forces ; 6.2.2. Moments and forces from an engine gimbaling in pitch and yaw ; 6.2.3. Numerical solution for calculating the effector trim deflections and throttles ; 6.2.4. Adjusting the trim profile along the trajectory -- Part 7. Static performance analysis along a flight trajectory. 7.1. Transforming the aeromoment coefficients ; 7.2. Control demands partial matric C(T). 7.2.1. Vehicle moments and forces generated from a double-gimbaling engine ; 7.2.2. Vehicle moments and forces generated by an engine gimballing in single direction ; 7.2.3. Moment and force variations generated by a throttling engine ; 7.2.4. Vehicle moments and forces generated by control surfaces ; 7.2.5. Total vehicle moments and forces due to all effectors combined ; 7.3. Performance parameters. 7.3.1. Aerodynamic center ; 7.3.2. Static margin ; 7.3.3. Center of pressure ; 7.3.4. Pitch static stability/time to double amplitude parameter (T2) ; 7.3.5. Derivation of time to double amplitude ; 7.3.6. Directional stability (Cnb-dynamic) ; 7.3.7. Lateral static stability/time to double amplitude ; 7.3.8. Authority of the control effectors ; 7.3.9. Biased effectors ; 7.3.10. Control to disturbance moments ratio (MaIMg) ; 7.3.11. Pitch control authority against an angle of attach amax dispersion ; 7.3.12. Lateral control authority against an angle of sideslip Bmax disturbance ; 7.3.13. Normal and lateral loads ; 7.3.14. Bank angle and side force during a steady sideslip ; 7.3.15. Engine-out of Ycg offset situations ; 7.3.16. Lateral control departure parameter ; 7.3.17. Examples showing the effects of LCDP sign reversal on stability ; 7.3.18. Effector capability to provide rotational accelerations ; 7.3.19. Effector capability to provide translational accelerations ; 7.3.20. Steady pull-up maneuverability ; 7.3.21. Pitch inertial coupling due to stability roll ; 7.3.22. Yaw inertial coupling due to loaded roll ; 7.3.23. Moments at the hinges of the control surfaces ; 7.4. Notes on spin departure / Aditya A. Paranjape. 7.4.1. Stability-based criteria ; 7.4.2. Solution-based criteria ; 7.5. Appendix -- Part 8. Graphical performance analysis. 8.1. Contour plots of performance parameters versus (mach and alpha) ; 8.2. Vector diagram analysis. 8.2.1. Maximum moment and force vector diagrams ; 8.2.2. Maximum acceleration vector diagrams ; 8.2.3. Moment and force partials vector diagrams ; 8.2.4. Vector diagram partials of acceleration per acceleration demand ; 8.3. Converting the aero uncertainties from individual surfaces to vehicle axes. 8.3.1. Uncertainties in the control partials ; 8.3.2. Uncertainties due to peak control demands ; 8.3.3. Acceleration uncertainties -- Part 9. Flight control design. 9.1. LQR state-feedback control ; 9.2. H-infinity state-feedback ; 9.3. H-infinity control using full-order output feedback ; 9.4. Control design examples ; 9.5. Control design for a reentry vehicle. 9.5.1. Early reentry phase ; 9.5.2. Midphase ; 9.5.3. Approach and landing phase ; 9.6. Rocket plane with a throttling engine. 9.6.1. Design model ; 9.6.2. LQR control design ; 9.6.3. Simulation of the longitudinal control system ; 9.6.4. Stability analysis ; 9.7. Shuttle ascent control system redesign using H-infinity. 9.7.1. Pitch axis H-infinity ; 9.7.2. Lateral axes H-infinity design ; 9.7.3. Sensitivity comparison using simulations ; 9.8. Creating uncertainty models ; 9.8.1. The internal feedback loop structure ; 9.8.2. Implementation of the IFL model -- Part 10. Vehicle design examples. 10.1. Lifting-body space-plane reentry design example. 10.1.1. Control modes and trajectory description ; 10.1.2. Early hypersonic phase using alpha control ; 10.1.3. Normal acceleration control mode ; 10.1.4. Flight-path angle control mode ; 10.1.5. Approach and landing phase ; 10.1.6. Six-DOF nonlinear simulation ; 10.2. Launch vehicle with wings. 10.2.1. Trajectory analysis ; 10.2.2. Trimming along the trajectory ; 10.2.3. Trimming with an engine thrust failure ; 10.2.4. Analysis of static perforce along the trajectory ; 10.2.5. Controllability analysis using vector diagrams ; 10.2.6. Creating an ascent dynamic model and an effector mixing logic ; 10.2.7. Ascent control system design, analysis and simulation ; 10.3. Space station design example. 10.3.1. Control design ; 10.3.2. Simulation and analysis.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Home library Shelving location Call number Status Date due Barcode Item holds
Book Book School of Mechanical & Manufacturing Engineering (SMME)
School of Mechanical & Manufacturing Engineering (SMME)
Aerospace Engineering 629.8 FAL (Browse shelf) Available SMME-4080
Total holds: 0

Includes bibliographical references (pages 409-412) and index.

Part 1. Description of the dynamic models. 1.1. Aerodynamic models ; 1.2. Structural flexibility ; 1.3. Propellant sloshing ; 1.4. Dynamic coupling between vehicle. actuators, and control effectors ; 1.5. Control issues ; 1.6. Coordinate axes ; Nomenclature -- Part 2. Nonlinear rigid-body equations used in 6-DOF simulations. 2.1. Force and acceleration equations ; 2.2. Moment and angular acceleration equations ; 2.3. Gravitational forces ; 2.4. Engine TVC forces ; 2.5. Aerodynamic forces and moments ; 2.6. Propellant sloshing using the pendulum model ; 2.7. Euler angles ; 2.8. Vehicle altitude and cross-range velocity calculation ; 2.9. Rates with respect to the stability axes ; 2.10. Turn coordination ; 2.11. Acceleration sensed by an accelerometer ; 2.12. Vehicle controlled with a system of momentum exchange devices ; 2.13. Spacecraft controlled with reaction wheels array ; 2.14. Spacecraft controlled with an array of single-gimbaled SMGs. 2.14.1. Math model of a SGCMS array ; 2.14.2. Steering logic for a spacecraft with SGCMGs -- Part 3. Linear perturbation equations used in control analysis. 3.1. Force and acceleration equations ; 3.2. Linear accelerations ; 3.3. Moment and angular acceleration equations ; 3.4. Gravitational forces ; 3.5. Forces and moments due to an engine pivoting and throttling ; 3.6. Aerodynamic forces and moments ; 3.7. Modeling a wind-gust disturbance ; 3.8. Propellant sloshing (spring-mass analogy) ; 3.9. Structural flexibility. 3.9.1. The bending equation ; 3.10. Load torques. 3.10.1. Load torques at the nozzle gimbal ; 3.10.2. Hinge moments at the control surfaces ; 3.11. Output sensors. 3.11.1. Vehicle attitude, Euler angles ; 3.11.2. Altitude and cross-range velocity variations ; 3.11.3. Gyros or rate gyros ; 3.11.4. Acceleration sensed by an accelerometer ; 3.11.5. Angle of attack and sideslip sensors ; 3.12. Angle of attack and sideslip estimators ; 3.13. Linearized equations of a spacecraft with CMGs and LVLH orbit ; 3.14. Linearized equations of an orbiting spacecraft with RWA and momentum bias ; 3.15. Linearized equations of spacecraft with SGCMG -- Part 4. Actuators for engine nozzles and aerosurfers control. 4.1. Actuator models. 4.1.1. Simple actuator model ; 4.1.2. Electrohydraulic actuator ; 4.1.3. Electromechanical actuator ; 4.2. Combining a flexible vehicle model with actuators ; 4.3. Electromechanical actuator example -- Part 5. Effector combination logic. 5.1. Dedication of an effector combination matrix. 5.1.1. Forces and moments generated by a single engine ; 5.1.2. Moments and forces generated by a single engine gimbaling in pitch and yaw ; 5.1.3. Moments and forces of an engine gimbaling in a single skewed direction ; 5.1.4. Moments and forces generated by a throttling engine or an RCS jet ; 5.1.5. Moment and force variations generated by a control surface deflection from trim ; 5.1.6. Vehicle accelerations due to the combined effect from all actuators ; 5.2. Mixing-logic example ; 5.3. Space shuttle ascent analysis example. 5.3.1. Pitch axis analysis ; 5.3.2. Lateral axes flight control system ; 5.3.3. Closed-loop simulation analysis -- Part 6. Trimming the vehicle effectors. 6.1. Classical aircraft trimming ; 6.2. Trimming along a trajectory. 6.2.1. Aerodynamic moments and forces ; 6.2.2. Moments and forces from an engine gimbaling in pitch and yaw ; 6.2.3. Numerical solution for calculating the effector trim deflections and throttles ; 6.2.4. Adjusting the trim profile along the trajectory -- Part 7. Static performance analysis along a flight trajectory. 7.1. Transforming the aeromoment coefficients ; 7.2. Control demands partial matric C(T). 7.2.1. Vehicle moments and forces generated from a double-gimbaling engine ; 7.2.2. Vehicle moments and forces generated by an engine gimballing in single direction ; 7.2.3. Moment and force variations generated by a throttling engine ; 7.2.4. Vehicle moments and forces generated by control surfaces ; 7.2.5. Total vehicle moments and forces due to all effectors combined ; 7.3. Performance parameters. 7.3.1. Aerodynamic center ; 7.3.2. Static margin ; 7.3.3. Center of pressure ; 7.3.4. Pitch static stability/time to double amplitude parameter (T2) ; 7.3.5. Derivation of time to double amplitude ; 7.3.6. Directional stability (Cnb-dynamic) ; 7.3.7. Lateral static stability/time to double amplitude ; 7.3.8. Authority of the control effectors ; 7.3.9. Biased effectors ; 7.3.10. Control to disturbance moments ratio (MaIMg) ; 7.3.11. Pitch control authority against an angle of attach amax dispersion ; 7.3.12. Lateral control authority against an angle of sideslip Bmax disturbance ; 7.3.13. Normal and lateral loads ; 7.3.14. Bank angle and side force during a steady sideslip ; 7.3.15. Engine-out of Ycg offset situations ; 7.3.16. Lateral control departure parameter ; 7.3.17. Examples showing the effects of LCDP sign reversal on stability ; 7.3.18. Effector capability to provide rotational accelerations ; 7.3.19. Effector capability to provide translational accelerations ; 7.3.20. Steady pull-up maneuverability ; 7.3.21. Pitch inertial coupling due to stability roll ; 7.3.22. Yaw inertial coupling due to loaded roll ; 7.3.23. Moments at the hinges of the control surfaces ; 7.4. Notes on spin departure / Aditya A. Paranjape. 7.4.1. Stability-based criteria ; 7.4.2. Solution-based criteria ; 7.5. Appendix -- Part 8. Graphical performance analysis. 8.1. Contour plots of performance parameters versus (mach and alpha) ; 8.2. Vector diagram analysis. 8.2.1. Maximum moment and force vector diagrams ; 8.2.2. Maximum acceleration vector diagrams ; 8.2.3. Moment and force partials vector diagrams ; 8.2.4. Vector diagram partials of acceleration per acceleration demand ; 8.3. Converting the aero uncertainties from individual surfaces to vehicle axes. 8.3.1. Uncertainties in the control partials ; 8.3.2. Uncertainties due to peak control demands ; 8.3.3. Acceleration uncertainties -- Part 9. Flight control design. 9.1. LQR state-feedback control ; 9.2. H-infinity state-feedback ; 9.3. H-infinity control using full-order output feedback ; 9.4. Control design examples ; 9.5. Control design for a reentry vehicle. 9.5.1. Early reentry phase ; 9.5.2. Midphase ; 9.5.3. Approach and landing phase ; 9.6. Rocket plane with a throttling engine. 9.6.1. Design model ; 9.6.2. LQR control design ; 9.6.3. Simulation of the longitudinal control system ; 9.6.4. Stability analysis ; 9.7. Shuttle ascent control system redesign using H-infinity. 9.7.1. Pitch axis H-infinity ; 9.7.2. Lateral axes H-infinity design ; 9.7.3. Sensitivity comparison using simulations ; 9.8. Creating uncertainty models ; 9.8.1. The internal feedback loop structure ; 9.8.2. Implementation of the IFL model -- Part 10. Vehicle design examples. 10.1. Lifting-body space-plane reentry design example. 10.1.1. Control modes and trajectory description ; 10.1.2. Early hypersonic phase using alpha control ; 10.1.3. Normal acceleration control mode ; 10.1.4. Flight-path angle control mode ; 10.1.5. Approach and landing phase ; 10.1.6. Six-DOF nonlinear simulation ; 10.2. Launch vehicle with wings. 10.2.1. Trajectory analysis ; 10.2.2. Trimming along the trajectory ; 10.2.3. Trimming with an engine thrust failure ; 10.2.4. Analysis of static perforce along the trajectory ; 10.2.5. Controllability analysis using vector diagrams ; 10.2.6. Creating an ascent dynamic model and an effector mixing logic ; 10.2.7. Ascent control system design, analysis and simulation ; 10.3. Space station design example. 10.3.1. Control design ; 10.3.2. Simulation and analysis.

There are no comments on this title.

to post a comment.
© 2023 Central Library, National University of Sciences and Technology. All Rights Reserved.